Oiahcr: online isolated arabic handwritten character recognition using neural network

نویسندگان

  • Basem Alijla
  • Kathrein Kwaik
چکیده

In this paper, an online isolated Arabic handwritten character recognition system is introduced. The system can be adapted to achieve the demands of hand-held and digital tablet applications. To achieve this goal, despite of single neural networks, four neural networks are used, one for each cluster of characters. Feed forward back propagation neural networks are used in classification process. This approach is employed as classifiers due to the low computation overhead during training and recall process. The system recognizes on-line isolated Arabic character and achieves an accuracy rate 9٥.7% from untrained writers and 99.1% for trained writers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Isolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs

For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...

متن کامل

On-line Handwritten Arabic Character Recognition using Artificial Neural Network

In this paper, an efficient approach for the recognition of online Arabic handwritten characters is presented. The method employed involves three phases: First, pre-processing in which the original image is transformed into a binary image .Second , training neural networks with feed-forward back propagation algorithm .Finally, the recognition of the character through the use of Neural Network t...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

A Gibbsian Kohonen Network for Online Arabic Character Recognition

The purpose of this study is to investigate handwritten online character recognition by Kohonen neural networks which learn class conditional Gibbs densities from training samples. The characters are represented by histograms (empirical distributions) of features. The Kohonen network learning algorithm implements a gradient ascent which maximizes an entropy criterion under constraints. Using a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2012